Broadening the Impact of Science

Broader Impacts (BIs) are the contributions to society and advancement of scientific knowledge that result from research. As we previously noted on the MCB blog in this infographic, there are many different ways science can have broader impacts. The BI activities and outcomes spotlighted in this post were submitted by MCB-funded researchers as examples of what they have accomplished with MCB support, not prescriptions for success during the merit review process. If you are: 1) an MCB-funded researcher and 2) would like to share your broader impacts activities with our readers, please fill out this form to be considered in a future post.

The top image shows the Slideboard website homepage which contains pictures of cells tagged with fluorescent markers in green and orange and text that says “Welcome to Slideboards – Explore Slideboards – Learn More.”The bottom image shows an example slideboard. On the bottom left of the slideboard example is a white screen shot of the title “Localization and abundance analysis of human IncRNAs at single cell and single molecule resolution,” authors “Cabili MN*#, Dunagin MC*, McClanahan PD, Biaesch A, Padovan-Merhar O, Regev A*, Rinn JL*#, Raj A*#; *equal contributions, #corresponding authors,” and the reference “Genome Biology 2015, doi:10.1186/s13059-015-0586-4,” followed by the acknowledgement “Great work led by Moran Cabili and Margaret Dunagin. A wonderful collaboration between the Rinn, Regev, and Raj labs!” On the bottom right of the slideboard example is a repeat of the title and author list, a dropdown arrow, twitter symbol, Facebook symbol, and a list of questions with hyperlinks to answers created by the students who made the Slideboard. The questions ask “1. Where can I learn more about IncRNA? 2. How did we choose the IncRNA to screen? 3. Did you test whether any types of stress change localization or abundance? 4. Should I do a two-color validation of my IncRNA FISH? 5. Was there any correlation between whether a probe “failed” and any other factor from RNA-seq? 6. What are these off targets that create the non-specific background? 7. What sorts of inconsistencies did the two color assay reveal? 8. Were these patterns the same across cell types?”

Slideboard website homepage (top) and an example slideboard with title page and Q & A (bottom), which are available at

Once a scientist makes a discovery, it is off to the presses to publish. The resulting journal article can be lengthy and filled with jargon, because it serves as a how-to guide for other scientists in the field to repeat experiments. Though very informative to experts, scientific publications can be challenging for students and the general public to read quickly and understand. Dr. Arjun Raj, MCB CAREER recipient and Associate Professor of Bioengineering at the University of Pennsylvania, and his research team came up with a new way to communicate science called “Slideboards.” As shown at the bottom of the image, slideboards contain the title, citation, and authors of journal articles, followed by lists of frequently-asked questions with in-line answers. Teams of graduate and high-school students generate each slideboard by asking and answering their own questions about the paper. Online readers can use a form at the bottom of the slideboard to submit their own questions, which are answered by the students. Creating a slideboard allows the team to practice using web-based technology, and translating complex scientific literature into a summarized question-based format. This outreach project also helped graduate students develop skills necessary to present their own research, while encouraging high-school students to learn about scientific projects at the leading edge of the field. To view the Slideboard website, go to

This work is partially funded by the Cellular Dynamics and Function Cluster of the Division of Molecular and Cellular Biosciences, Awards #MCB – 1350601.

A group of students and graduate student Laura Bankers stand on a bridge over water in front of trees and grass on a nature hike at the Science Booster Club’s 2016 evolution summer camp (top left). Graduate student Kyle McElroy talks with a group of students in front of trees and grass by water during the 2016 evolution summer camp. He is gesturing with his hand, and wearing a green shirt and orange and black ball cap. One of the students, a young girl is smiling wearing a checkered blouse and green lanyard (middle left). A group of young men who are seated in a classroom at a table smile at the camera and hold up vials of DNA that they learned how to extract during the 2016 evolution summer camp while wearing a blue and orange tee-shirt, grey tee-shirt, blue tee-shirt and blue and white ball cap, or a black tee-shirt. Two are wearing orange lanyards around their neck and one is wearing purple lab gloves. In the background other youth participants are standing in front of a monitor glowing on the wall. (bottom left). Dr. Emily Schoerning is dressed up as Captain Planet in a green wig, red shirt and shorts, and blue nylons. She is standing with her arms up in a superhero pose in front of a window near potted plants (top right). Undergraduate student Jorge Moreno, wearing a black polo shirt and jeans with a yellow badge, and graduate student Laura Bankers in a grey dress. Both are standing in front of a yellow and black wall with a display monitor, and are standing behind a table with candy, flyers, and other materials, talking to off-screen participants (bottom right).

Attendees at the Science Booster Club’s 2016 evolution summer camp enjoyed nature hikes with graduate student Laura Bankers (top left), discussions of the evolution of parasites with graduate student Kyle McElroy (middle left), and gained hands-on experience extracting DNA with Integrated DNA Technologies (bottom left). The Science Booster Club hosted visits with Dr. Emily Schoerning as Captain Planet (top right), and discussions with undergraduate Jorge Moreno and graduate student Laura Bankers at the Iowa State Fair (bottom right).

As you look around the sidelines at a sporting event, you may notice a group of parents enthusiastically raising funds for new team uniforms or sporting equipment (booster club). Taking that concept out of the world of sports and into the world of science, Dr. Maurine Neiman (Associate Professor of Biology at the University of Iowa) and Dr. Emily Schoerning (Director of Research and Community Organizing at the National Center for Science Education) teamed up with students at the University of Iowa to create a Science Booster Club. The Science Booster Club held a summer camp (images on the left) and participated in community-organized events such as the Iowa State Fair (images on the right). At each event, club members facilitated fun, interactive science activities and discussions with the public. The group also raised funds to purchase and donate equipment to local science teachers. Young people attending these events, often from underserved areas that lacked scientific resources, have the chance to see themselves as scientists by learning through a hands-on approach. Graduate and undergraduate booster club members also gained valuable grant writing and proposal review, outreach, communication, education, and event planning experience – skills that are useful in future professional scientific careers. As such, for his work in the science booster club, graduate student Kyle McElroy received a 2017 summer stipend from MCB’s NSF 16-067 supplement to improve graduate student preparedness for entering the workforce. Dr. Schoerning noted, “We worked with over 54,000 Iowans last year during this pilot project at the University of Iowa, and have expanded into a national program in 11 states.” Click here to learn more about the Science Booster Club at the University of Iowa.

This work is partially funded by the Genetic Mechanisms Cluster of the Division of Molecular and Cellular Biosciences, Awards #MCB – 1122176.

Share your thoughts with us!

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s