Sharing MCB Science

MCB-awardee receives Nobel Prize in Chemistry

The Division of Molecular and Cellular Biosciences (MCB) joins the National Science Foundation (NSF), and the scientific community in congratulating Dr. Jennifer Doudna and Dr. Emmanuelle Charpentier on their 2020 Nobel Prize in Chemistry. The two were awarded the prize jointly “for the development of a method for genome editing.” A little over a decade ago, MCB awarded Dr. Doudna the first in a series of grants to explore Mechanisms of Acquired Immunity in Bacteria (MCB 1244557).  “It is wonderful to see the fruits of Dr. Doudna’s work, initially enabled by NSF investment in discovery-driven research, which is reaping many societal benefits” said Dr. Basil Nikolau, MCB Division Director. 

“CRISPR-Cas9 is opening new worlds of possibility in fields as wide-ranging as bioengineering, medicine, agriculture, and biomanufacturing. Researchers are still working to understand the full potential of this important tool,” said National Science Foundation Director Sethuraman Panchanathan. “The teams behind this groundbreaking discovery have uncovered and developed fundamental science that will result in decades’ worth of applications. NSF has long supported the discovery-driven research of Dr. Jennifer Doudna and her lab with grants, including our prestigious Alan T. Waterman award. We congratulate her and Emmanuelle Charpentier and join the rest of the world in waiting to see what CRISPR produces next,” said Dr. Panchanathan in a news release.

Share Your #NSFstories

NSF is active on social media platforms and is ready to engage with you and your exciting science. But the internet is loud and simply bursting with cat videos, so what’s the quickest way to get in touch with NSF?

Tag us!

As scientists, you can appreciate the value of proper labeling and classification, and that’s what those fun hashtags are for!  Use #NSFstories and/or #NSFfunded when posting online so we can see and share your discoveries or events.

Email us!

Do you want us to help promote your NSF-funded work on our platforms? Send your research updates to your Program Officer and they will forward them on to our social media team.

Check us out on:

  NSF NSF BIO
Twitter www.twitter.com/NSF http://www.twitter.com/NSF_BIO
Facebook www.facebook.com/US.NSF  
Instagram www.instagram.com/nsfgov  
Pinterest www.pinterest.com/USNSF  
YouTube www.youtube.com/user/VideosatNSF  

Sharing MCB Science – Unraveling the relationship between DNA winding and chromatin topology

A 3D model of DNA wrapped around nucleosomes

A model of circular nucleosome array

Cells tackle the complex task of packaging all their DNA into a tiny nucleus by spooling it around nucleosomes, sets of 8 specialized proteins called histones. Historically there has been variation in estimates in the number of times that DNA winds around each nucleosome. This number is known from x-ray crystallography to be about 1.7 superhelical turns; however, previous examination of circular nucleosome arrays indicated to researchers that the number of turns is closer to one. The Grigoryev lab at Pennsylvania State University has proposed an explanation.

Through a more direct approach using a combination of electrophoresis and electron microscopy, Dr. Grigoryev and his lab, in collaboration with Dr. Zhurkin lab at NIH, discovered that the number of turns and the space between nucleosomes is actually quite variable within the same segment of DNA. Furthermore, the distance between nucleosomes seems to influence the number of turns DNA makes per each nucleosome. They also noted that this variability of chromosome spacing could be a mechanism which chromatin domains use to control DNA packing. The findings were published in Science Advances.

DNA packs tightly to fit into the cell nucleus, but how dense it is and how the density is distributed across the genome also influences higher level organization such as chromatin shape and even chromosome shape and structure. Shape and structure, in turn, influence how DNA interacts with the environment around it. For example, the density of DNA-packing influences whether regulatory proteins can properly interact with a gene and therefore whether the gene is expressed. Understanding the mechanisms behind how these changes are managed can provide a better look into how DNA functions, which can expand our ability to understand and manipulate genetic processes.

This work was funded by the Genetic Mechanisms cluster of the Division of Molecular and Cellular Biosciences, award #1516999.

Help BIO Spread the Word About Your Research

The following was published Dec. 4 on Bio Buzz, the blog of NSF’s Directorate for Biological Sciences, Office of the Assistant Director. Access the original post here.

Every PI knows that disseminating data is an essential part of the scientific process. From publishing manuscripts to presenting at meetings, a project’s biggest impacts only come after it has been shared. Promoting new discoveries and cutting-edge research (more…)

SPOTLIGHT ON MCB FUNDED SCIENCE

A spotlight illuminates the words 'Spotlight on MCB-funded Science.'

Photo Credit: Matusciac Alexandru/Shutterstock.com

Sharing MCB Science is one of our six blog themes where you can learn about exciting MCB-funded research submitted by our investigators (via this webform). We greatly appreciate the overwhelmingly positive response of the MCB scientific community and have received many more submissions than can be featured in long form on the blog. Enjoy this shorter spotlight of submissions we have received!

a closeup of a cell, it is shapes like a lollypop, a long thin stalk with a rounded top which is darker in color

Joseph K. E. Ortega – Photograph of a stage IV sporangiophore of Phycomyces blakesleeanus with the micro-capillary tip of a pressure probe.

Algal, fungal, and plant cells interact with their environment by regulating their size and shape through expansive growth, an increase in cell volume due predominately to an increase in water uptake. This process presents a special challenge for algae, fungi, and plants because cells in these organisms have an exoskeleton-like cell wall that provides support, protection, and shape.  When water enters these cells, turgor pressure builds up, which stretches (deforms) the cell wall; at the same time, new material is added to the cell wall to fill in the expanded regions and thereby control the size and shape of the enlarging cell. The interconnected processes of water uptake, wall deformation, and control of cell size and shape are crucial for algal, fungal, and plant survival.

Previous research has provided a good description of the molecular and mechanical changes accompanying expansive growth.  Taking advantage of this foundation, Dr. Joseph K. E. Ortega, Professor of Mechanical Engineering at the University of Colorado, Denver, is bringing a new dimension to quantify cellular changes during expansive growth.  He has developed a mathematical model of the interconnected processes, called the Augmented Growth Equations (AGE). As described in his new publication, the model organizes multiple equations to represent the relationships between variables and uses dimensional analysis to produce dimensionless coefficients. The dimensionless coefficients enable researchers to more easily quantify the biophysical processes and better predict how changes in water absorption and cell wall deformation regulate expansive growth. While the model does not address the shape of the cells, the mathematical framework provides insight as to how water uptake and wall deformation are regulated in algal, fungal, and plant cells to control expansive growth during normal conditions and in response to changes in the environment.

This work is partially funded by the Molecular Biophysics Cluster of the Division of Molecular and Cellular Biosciences, Awards #MCB-0948921.

on the left is a still image from an MRI of a chest with the heart and lungs visible. On the right is a graph with the quick heartbead and slower respiration plotted as curves.

Dr. Steven Van Doren – Example of how the TREND software can distinguish the patterns of a heart beating and lungs breathing from an MRI movie

Visual outputs, such as photographs or movies, contain important data from scientific experiments. For example, identifying biologically relevant signals over time (trends) can be challenging, as they may be subtle or mixed into background movements or noise. To identify trends, researchers scour the data looking for specific features, such as peaks, and either mark them by hand, which is time consuming and subjective, or set specific background thresholds in instrumentation, which can result in mistaking signal for noise. In a new publication, Dr. Steven Van Doren, Professor of Biochemistry at the University of Missouri, and his post-doctoral researcher, Dr. Jia Xu, describe a new software program called TREND (Tracking and Resolving Equilibrium and Nonequilibrium population shifts in Data). The software allows researchers to objectively extract information from two-dimensional images or videos, and in another recent publication, they describe extending the analysis to several different types of data.

TREND uses a statistical approach, called principal component analysis (PCA), on a series of individual measurements to compress and organize multivariate data so that researchers can select for and detect changes in a variety of factors over time. The factors can be anything: characteristics of a stream, grades in a class, or gene variants. When applied to movies, such as this sample video of a sunset, a trend in the data, such as the movement of the sun across the sky, can be plotted after removing background noise, such as motion from clouds. Another example is separating the pattern of a heart beating from lungs breathing using TREND (a photo of this video is shown above). TREND is available for licensing and download at http://biochem.missouri.edu/trend and https://nmrbox.org/.

 

This work is partially funded by the Molecular Biophysics Cluster of the Division of Molecular and Cellular Biosciences, Awards #MCB-1409898.

Spotlight on MCB-funded Science

 

A spotlight illuminates the words 'Spotlight on MCB-funded Science.'

Photo Credit: Matusciac Alexandru/Shutterstock.com

Sharing MCB Science is one of our six blog themes where you can learn about exciting MCB-funded research submitted by our investigators (via this webform). We greatly appreciate the overwhelmingly positive response of the MCB scientific community and have received many more submissions than can be featured in long form on the blog. Enjoy this shorter spotlight of submissions we have received!

Ever wonder how a cell makes a tough decision? When food is scarce, Bacillus subtilis (a common soil bacteria) faces a difficult choice of when to shut down cellular processes and become dormant via sporulation (spore formation). Timing is key: wait too long and die from starvation; sporulate too early and die from crowding by rapidly dividing neighboring bacteria. What serves as the trigger – a specific biochemical signal or a more general physiological response – to enable starvation sensing and sporulation was unknown. As part of a collaborative project, Dr. Oleg Igoshin, an Associate Professor in the Department of Bioengineering at Rice University, Dr. Masaya Fujita, an Associate Professor in the Department of Biology and Biochemistry at the University of Houston, and their research teams applied computational and mathematical tools to this biological question. As described in this publication, they discovered the rate at which the cell grows may serve as a signal of starvation, triggering spore formation. This work could lessen food spoilage and control food-borne pathogens by offering new ways to inhibit sporulation in close relatives of B. subtilis that live on food.

This work is partially funded by the Systems and Synthetic Biology Cluster of the Division of Molecular and Cellular Biosciences, Awards #MCB – 1244135 and #MCB – 1244423.

Diatoms (a unicellular photosynthetic microalgae) are an important part of food webs, especially in areas of the ocean with an abundance of fish frequented by the fishing industry. Because conditions and availability of environmental resources change, diatoms regulate physiological functions (such as the carbon-concentrating mechanisms (CCMs) and photorespiration previously described) at the level of gene expression. Instead of focusing on one environmental condition or type of diatom, Dr. Justin Ashworth (Post-doctoral Fellow),  Dr. Monica Orellana (Principal Scientist) and Dr. Nitin Baliga (Senior Vice President and Director) of the Institute for Systems Biology integrated all publicly available microarray data (displaying gene expression levels) from multiple conditions for the model diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum to look for trends. As described in this publication and in the resulting integrative analysis available online at the Diatom Portal, the research team uncovered common patterns of gene expression and function. They also identified potential cis-regulatory DNA sequence motifs and distinct regions induced in response to changes in ocean pH levels and the availability of nitrate, silicic acid, and carbon. A greater understanding of this fundamental level of regulation enables scientists to better support diatoms in their role as biogeochemical nutrient recyclers.

This work is partially funded by the Cellular Dynamics and Function Cluster of the Division of Molecular and Cellular Biosciences, Award #MCB – 1316206.

As we previously described on the MCB Blog, the laboratory of Dr. Alexander Mankin and Dr. Nora Vázquez-Laslop at the Center for Biomolecular Sciences, University of Illinois – Chicago, studies fundamental mechanisms in protein synthesis. Ribosomes inside the cell read three mRNA nucleotides at a time (a reading frame) during protein synthesis (translation). Sometimes, the ribosome slips one or two nucleotides on the mRNA to a different reading frame (frameshift). Recent work on the E. coli bacterial copper transporter gene (copA) by Drs. Mankin, Vázquez-Laslop, and their research team uncovered a slippery sequence in the mRNA that led to “programmed frameshifts.” Depending on whether or not the ribosome slipped, two different proteins were made – a previously unidentified copper chaperon protein or a copper transporter protein. Together, the copper chaperon and transporter proteins help protect the bacterial cell from internalizing too much copper. This work provides new insight into how bacteria change gene expression in different environmental conditions and offers training for student researchers such as lead author Sezen Meydan, who was highlighted in the ‘Meet the Author’ section of Molecular Cell.

This work is partially funded by the Genetic Mechanisms Cluster of the Division of Molecular and Cellular Biosciences, Awards #MCB – 1244455 and #MCB – 1615851.

SHARING MCB SCIENCE: UNRAVELING THE DYNAMICS OF TRANSMEMBRANE PROTEINS

Alt Caption (for ADA compliance): Undergraduate honors student Armin Mortazavi, wearing a blue dress shirt, and faculty mentor Dr. Roger Koeppe, wearing a black suitcoat, dress shirt, and glasses, are seated in a laboratory in front of a computer screen looking at deuterium nuclear magnetic resonance data (not shown).

An alpha helix is a stretch of amino acids coiled in three-dimensional space, similar to a spring, which can serve a variety of functions in transmembrane proteins (proteins that span the membrane of a cell). For example, a protein may be anchored into the membrane by one or more alpha helices. Or, since alpha helices physically link the interior and exterior of the cell, they can stimulate the initiation of a signaling cascade inside the cell in response to an external binding event. In addition, multiple alpha helices bundled together can form a channel, enabling ions to move across the hydrophobic interior of the cell membrane where they are otherwise excluded. These are just a small sample of the large number of biological processes and pathways thought to involve alpha helices in transmembrane proteins; therefore, researchers like Dr. Roger Koeppe II and his students are studying alpha helices to fill in the gaps in our fundamental understanding of the dynamics of transmembrane proteins.

One such gap involves identifying the factors that stabilize tilted transmembrane alpha helices. Alpha helices display a variety of orientations within a membrane. Some may reside in the membrane vertical to its axis; others tilt across the membrane at different angles. In his lab in the Department of Chemistry and Biochemistry at the University of Arkansas, Fayetteville, Dr. Koeppe and his students established an experimental model and used a biophysical technique to determine the positions of amino acid residues inside tilted alpha helices in a membrane environment.

In a recent publication, the team described their efforts to design, synthesize, and purify a series of nearly-identical peptides (23 amino acid strands that only varied slightly in amino acid composition). At the ends of each peptide, the team placed deuterium (radioactive isotope) labels on two alanine amino acid residues (at positions 3 and 21). When the team exposed these peptides to lipids (fatty acids that compose the interior of a cell membrane), they formed tilted alpha helices. Using a technique called solid-state deuterium nuclear magnetic resonance (NMR), a series of spectra were gathered for each helix.

As the cover for the March 2016 issue of ChemBioChem depicts, the team detected a deviation between actual and expected orientations of the deuterium-labeled alanine residues at positions 3 and 21 – they actually appeared far from their expected orientations as part of the alpha helix (blue curve). In this way, Dr. Koeppe and his research team discovered that the first and last few amino acids at each end of the tilted alpha helix were unraveled from and no longer part of the alpha helix.

A driving force behind the formation of an alpha helix is the increased stability that results from numerous interactions between the amino acids in the helix, so unraveling these interactions at the ends of the helix may seem to disrupt stability. However, Dr. Koeppe and his team noted that unwinding the helix at both ends creates a larger surface area, enabling new interactions to occur between the amino acids in the helix and the surrounding membrane lipids – providing additional conformational stability in support of the tilt and limiting the helix’s motion. These research findings contribute to our understanding of fundamental biological processes including lipid-protein interactions, membrane protein stability, and membrane biophysics.

When asked about the broader impacts of his research, Dr. Koeppe responded:

“Notably, much of this research involved an undergraduate honors student, Armin Mortazavi. The opportunities for undergraduate students to conduct cutting-edge research alongside graduate students provide students with valuable hands on experience, exposure to new techniques, and mentoring at an early stage in their scientific careers. We have also increased the exposure of communities in Arkansas to science – establishing science cafés and statewide infrastructure projects such as a laboratory where you can explore proteins using virtual reality technology. These efforts broaden the participation of non-traditional or underrepresented groups in science.”

This work is partially funded by the Molecular Biophysics Cluster of the Division of Molecular and Cellular Biosciences, Award #MCB – 1327611.

SHARING MCB SCIENCE: REGULATING NITROGENASE FORMATION IN CYANOBACTERIA

thiel-1b

Cyanobacteria are blue-green colored microbes with a simple cellular structure (like bacteria) and the ability to convert sunlight into chemical energy through photosynthesis (like plants). They also perform nitrogen fixation, a process by which nitrogen is extracted from the air and converted into ammonia, using an enzyme (a specialized protein) called nitrogenase. Since ammonia is a potent plant fertilizer, cyanobacteria can live symbiotically with plants in a variety of soil, water, and marsh habitats – enabling some farmers to use cyanobacteria in place of traditional fertilizers to improve the yields of rice and other staple food crops. Because of its function in nitrogen fixation, research on nitrogenase has the ability to create a firm foundation for future advances in agriculture and food security in support of the NSF’s mission to “…advance the national health, prosperity, and welfare…”

Associate Dean Dr. Teresa Thiel and her lab in the Department of Biology at the University of Missouri – St. Louis study a type of cyanobacteria called Anabaena variabilis. Uniquely, this cyanobacterium has three different nitrogenase enzymes, each capable of performing nitrogen fixation in different environmental conditions. The Thiel team previously studied each of the three nitrogenases and characterized a group of fifteen genes (called the nif1 gene cluster) whose expression through transcription (DNA to RNA) and translation (RNA to protein) is necessary to make the primary nitrogenase in Anabaena variabilis. They also identified potential sites of regulation; cells often regulate discrete steps in the protein production process as a way to conserve cellular resources by limiting the amount of protein produced when it is not needed. For years, scientists knew the important role nitrogenase played in nitrogen fixation, but had yet to uncover how cyanobacterial regulation of production of this important enzyme.

In a recent publication, Dr. Thiel and her team describe their research on one regulatory site called an RNA stem-loop. The investigators predicted this secondary structure would occur before an important gene in the nif1 cluster (called nifH1). The nifH1 gene encodes a protein largely responsible for nitrogenase enzyme assembly and function. Using a process called polymerase chain reaction (PCR) to mutate the RNA stem-loop, they studied how changes in the stem-loop altered nifH1 transcript stability and processing. The Thiel team found that mutations impacting the structure or sequence of the RNA stem-loop also severely inhibited the levels of nifH1 transcript, and most importantly, limited cyanobacteria’s ability to perform nitrogen fixation.

These findings have potential for modulating the efficiency of nitrogen fixation in cyanobacteria, leading to more fertilizer production, and a potential source of renewable energy by harnessing the hydrogen created during nitrogen fixation. This work also may impact an exciting area of bioengineering research. As described in a MCB awarded US and UK research BBSRC-collaboration Ideas Lab proposal, bioengineers are attempting to create a “nitroplast” cellular structure, patterned after the nitrogenase in cyanobacteria, to allow plants to make their own fertilizer.

When asked about the broader impacts of her research, Dr. Thiel responded:

The engagement of scientists with the larger scientific and non-scientific community is critical to promoting a public understanding of science and in attracting students to careers in science. To do so, the broader impacts of my research include integrating research within graduate, undergraduate, and high school education. Students from Jennings Senior High School, a predominantly African-American high school located in North St. Louis County, have participated in 6 weeks of summer research as part of the Jennings at UMSL Program, which is designed to help students succeed in college. Additionally, a student from the UMSL SUCCEED program, which supports vocational experiences for students with intellectual or developmental disabilities works as a laboratory aide in my lab. Furthermore, I participate in educational outreach activities in the St. Louis community, working with local high school teachers to incorporate hands-on microbiology activities in their classrooms.

This work is partially funded by the Division of Molecular and Cellular Biosciences, Award #MCB-1052241.

SHARING MCB SCIENCE: DISCOVERY OF A NON-BASE FLIPPING MECHANISM IN DNA REPAIR

Eichmangroup1

Eichman Lab members involved in the study (from left to right): Dr. Elwood Mullins, Dr. Brandt Eichman, Rongxin Shi, and Dr. Zachary Parsons. Photo Credit: Susan Urmy/Vanderbilt

The DNA of humans, like that of all other organisms, can be damaged, acquiring what are referred to as “lesions.” A common form of DNA damage is DNA alkylation, where a small group of carbons and hydrogens (alkyl group) are chemically bound to the base of DNA nucleotides (the As, Ts, Cs, and Gs that make up DNA). When a DNA base is alkylated, the normal function of the cell’s DNA is disrupted and the genetic information being stored is mutated, which has the potential to develop into some types of cancer and threaten the survival of the organism.

To protect the organism from the effects of DNA lesions, cells have processes to repair DNA. One such process is called base excision repair, which was one subject of last year’s Nobel Prize in Chemistry. As shown in the figure below, base excision repair begins with DNA glycosylase (ie. a protein with enzymatic function that initiates a process), which is able to bind to double-stranded DNA and look for DNA lesions using a base-flipping mechanism. In base-flipping, a DNA nucleotide that is suspected of containing an alkyl group is flipped away from its base pair partner and into the active site of the DNA glycosylase. If the DNA glycosylase sees a lesion, it severs the chemical bond that links the DNA base to the DNA backbone and initiates subsequent repair steps, ultimately restoring the DNA to an undamaged state.

Until recently, it was thought that all DNA glycosylases used base-flipping to repair damaged DNA. A paradigm shift occurred in the DNA repair field when a non-base-flipping DNA glycosylase enzyme, called AlkD, was discovered by Professor Dr. Brandt Eichman in the Department of Biological Sciences and Center for Structural Biology at Vanderbilt University and his research group, in collaboration with Professor Dr. Sheila David and her research group at University of California Davis and Professor Dr. Yasuhiro Igarashi at the Toyama Prefectural University in Japan. Repair that does not involve base-flipping has also been shown by the Eichman team to uniquely allow the repair of bulky DNA lesions.

research-summary.png

Space-filling models (left) and illustrations (right) showing base-flipping excision repair (top) and non-base-flipping excision repair (bottom). Top: A damaged DNA base (blue) from a double stranded DNA helix (orange and yellow) is inserted, or “flipped,” into the active site of the DNA glycosylase enzyme (white or grey). Bottom: A bulky chemical group (purple) attached to a DNA base (blue) results in a lesion within a double stranded DNA helix (orange and yellow) that is repaired without base-flipping by a DNA glycosylase enzyme (AlkD) (white or grey).

As described in a recent publication in Nature, the Eichman research team used a technique called X-ray crystallography to capture a series of time-lapsed 3D renderings of AlkD as it repaired a lesion. The Eichman team’s conclusion that AlkD removes DNA damage using a non-base-flipping mechanism was supported by their crystallographic analysis which showed the AlkD enzyme mainly contacted the DNA backbone, not the DNA lesion. Thus, non-base-flipping broadens the spectrum of DNA damage that DNA glycosylases are known to repair. Also, the 3D structure of AlkD is common to proteins that do not have enzymatic functions, which makes it difficult for researchers to identify non-base-flipping DNA glycosylases just based on their structure. Therefore, there is a strong possibility there are other DNA repair proteins that scientists have yet to identify.

When asked about the broader impacts of his research, Dr. Eichman responded: “This research program has involved trainees from all levels—undergraduate, graduate, and postdoctoral—several of whom have continued on in a number of scientific careers, including medical school, science policy, and industry. Most importantly, it has enabled us to expose undergraduates to cutting edge structural biology and to the practical aspects of X-ray crystallography, both in the classroom and in the lab.”

This work is funded jointly by the Genetic Mechanisms program in the Division of Molecular and Cellular Biology (MCB) and the Chemistry of Life Processes Program in the Division of Chemistry in the Directorate of Mathematical and Physical Sciences, Award #MCB-1122098 and Award #MCB-1517695.

SHARING MCB SCIENCE: Cellular Polarization in Yeast

Many cellular processes are regulated by the ability of a cell to transmit and receive signaling molecules such as hormones, cytokines, and neurotransmitters. The binding of a signaling molecule to the extracellular portion of a receptor protein embedded in a cell’s membrane starts a signaling cascade inside the cell, which activates intracellular proteins and changes cellular responses. G proteins constitute a large family of intracellular proteins that act as molecular switches inside the cell upon coupling with G protein receptors in the membrane.

The mating process in Saccharomyces cerevisiae (budding yeast) requires the activation of a heterotrimeric G protein switch in response to the yeast cell’s G protein receptors binding pheromone signaling molecules released by a potential mate. This activation results in the growth of a mating projection–or shmoo–extending in the direction of the pheromone source. Cellular growth in response to a chemical stimulus is called chemotropism. The location and accumulation of G protein receptors across the cell membrane plays a critical role in the cell’s ability to detect the pheromone source and directional growth towards a mating partner. However, some of the molecular mechanisms underlying shmoo growth and G protein receptor accumulation have not been well understood until recently. A discovery by Dr. David Stone, a Professor in the Department of Biological Sciences at the University of Illinois at Chicago, and his research team has led to advancements in this area.

As mentioned previously, G protein receptors that bind pheromones are not uniformly distributed in the cell’s membrane. Instead, they cluster wherever the pheromone concentration is the highest and a shmoo grows in the direction of the cell’s suitor. The interaction between the pheromone and G protein receptor causes intracellular signaling, resulting in the delivery of secretory vesicles and cytoskeletal rearrangement. The delivery of the secretory vesicles is actin cable-directed. These processes ultimately lead to yeast cell fusion and reproduction. The mechanism that Dr. Stone and his team wanted to understand was how G protein receptors polarize towards the source of the pheromone gradient and determine the position of the shmoo growth site prior to the delivery of secretory vesicles and cytoskeletal rearrangement.

In an article published in Science Signaling, the Stone lab showed that the interaction of an enzyme called yeast casein kinase 1 (Yck1) with a G protein (Gβ) at the cell membrane plays an important role in the establishment of polarity by inhibiting phosphorylation (addition of a phosphoryl group) and internalization of the G protein receptor. The authors further showed differential phosphorylation of the receptor is essential to pheromone gradient sensing and generates receptor polarity independently of actin-cable nucleation and vesicle delivery. Dr. Stone and his team also proposed that differences in G protein receptor occupancy modulate the chemotropic growth site in budding yeast through signal amplification produced by two positive feedback loops that the authors describe in the publication.

When asked about the broader impacts of his research, Dr. Stone responded:

“My lab has contributed to an emerging paradigm in G-protein coupled receptor (GPCR) signaling which is of broad interest to the cell signaling community: GPCRs and their associated heterotrimeric G proteins are spatiotemporally regulated, and in turn, regulate spatiotemporal processes. We were among the first groups to show that heterotrimeric G proteins serve to recruit effector molecules to specific regions of the plasma membrane at specific times.

My NSF-sponsored research program has involved scientists in training at all levels — from middle school and high school students to undergraduate students, graduate students and postdoctoral fellows. Most notably, I worked closely with a group of 6th graders from a local middle school to formulate a proposed experiment to be carried out on the International Space Station. NASA picked our experiment from a national pool of applicants, and the experiment was performed by astronauts on the International Space Station. The students set up the experiment and analyzed the results in my lab. The launch of their experiment was covered by local media. Over the years, my research groups have included a significant number of women and underrepresented minorities (>50%). The training of my graduate students has been highly enriched by their visits to the labs of our numerous collaborators, who have provided them with experience in a range of approaches—e.g., proteomics, advanced imaging, microfluidics, and mathematical modeling.”

This work is partially funded by the Division of Molecular and Cellular Biosciences, Award #MCB-1415589.