awards

DR. SUSAN GERBI WINS THE 2017 GEORGE W. BEADLE AWARD

This is a headshot style photo of Dr. Susan Gerbi who is sitting in her laboratory in front of culture test tubes and a white board, wearing a red sweater, pink turtleneck shirt, and smiling.

MCB congratulates Dr. Susan Gerbi on her 2017 George W. Beadle Award. Each year, the Genetics Society of America honors one investigator for “outstanding contributions to the community of genetics research” such as “creating and disseminating an invaluable technique or tool, assisting the community with the adoption of a model system, working to provide a voice for the community in public or political forums, and/or maintaining active leadership roles.” This distinguished honor was presented to Dr. Gerbi during the 58th Annual Drosophila Research Conference in California.

Dr. Gerbi is the George D. Eggleston Professor of Biochemistry and Professor of Biology at Brown University. In part with NSF support, she has made many notable scientific contributions in all of the areas described above. For example, together with Dr. Joseph Gall, Dr. Gerbi created in situ hybridization, an invaluable technique to locate genes on chromosomes. Additionally, she developed a novel Replication Initiation Point Mapping (RIP) technique that enabled researchers to pinpoint the start site for DNA replication in eukaryotes. Dr. Gerbi and her group also solved the first sequence of eukaryotic 28S ribosomal RNA (28S rRNA). By comparing it to its bacterial homologue (23S rRNA), Dr. Gerbi and her team identified both regions of variability (expansion segments), which aid researchers during phylogenetic analysis, and key regions of conservation (core secondary structure and domain specific conserved sequences) that are held constant among organisms to maintain rRNA function. Further, Dr. Gerbi was the first to identify an in vivo role for U3 small nucleolar RNA, which promotes ribosomal RNA folding and processing, and she was the first to develop a fluorescence-based method to track localization of small RNAs in vivo, which allowed for the identification of specific sequences that target the RNAs to the sites of ribosome assembly in the nucleolus.

Dr. Gerbi and her research team also developed Sciara coprophilia as a model organism, mapping the fly’s genome using a new, handheld DNA sequencing technology called the Oxford Nanopore MinION. (The MinION made a recent appearance in space when it was used by NASA Astronaut Kate Rubins to sequence DNA on the International Space Station.) With the genome, transcriptome, and methodology for genome editing now available, Dr. Gerbi is actively promoting the use of Sciara as a model organism to mine its unique biological features, including a monopolar spindle in meiosis, non-disjunction, chromosome imprinting, and elimination. Studies on Sciara offer new insights into the mechanisms of locus-specific DNA re-replication, which may serve as a paradigm for gene amplification in cancer. This work was partially funded by the Genetic Mechanisms cluster of the Division of Molecular and Cellular Biosciences, Award #MCB-1607411.

Dr. Gerbi has also served the scientific community in numerous leadership positions and science advocacy roles. For example, Dr. Gerbi was Founding Chair of the Department of Molecular Biology, Cell Biology, and Biochemistry at Brown University, serving in that role for 10 years. Just a few of the many broader impacts of her work that have focused on training the next generation of scientists include 33 years of service as principal investigator (PI) or co-PI on Brown University’s National Institutes of Health (NIH) predoctoral training grant. Dr. Gerbi has also served as President of the American Society for Cell Biology (ASCB), fellow of the American Association for the Advancement of Science (AAAS), chair of the Federation of American Societies for Experimental Biology (FASEB) Consensus Conference on Graduate Education, founding member and Chair of the Association of American Medical Colleges (AAMC) Graduate Research Education and Training (GREAT) group, and a member of the National Academy of Sciences Committee’s Study on the National Needs for Biomedical Research Personnel. She was also a member of the National Academy of Sciences committee on Bridges to Independence, which led to NIH’s Pathway to Independence K99 award that provides research funding opportunities to postdoctoral researchers who are transitioning to faculty positions.

For these and other efforts, Dr. Gerbi has contributed greatly to the genetics community through her dedication to scientific research, leadership, and advocacy. Please join us in congratulating Dr. Susan Gerbi!

CONGRATULATIONS TO 2017 PRESIDENTIAL EARLY CAREER AWARDEE, DR. AHMAD KHALIL!

Dr. Ahmad Khalil is smiling, arms crossed, standing in front of his lab bench while wearing a blue and white checked shirt and glasses.

MCB would like to congratulate Dr. Ahmad (Mo) Khalil, recipient of the 2017 Presidential Early Career Award for Scientists and Engineers (PECASE). The PECASE award is the most prestigious honor a scientist or engineer can receive from the U.S. government early in their independent research career.

PECASE selection is a highly competitive process. As we previously noted on the MCB Blog, awardees must first receive a Faculty Early Career Development (CAREER) award. Dr. Khalil received his CAREER award from the Systems and Synthetic Biology Cluster in the Division of MCB. The National Science Foundation annually nominates up to twenty CAREER awardees for the PECASE award, and the White House Office of Science and Technology Policy makes the final selection of PECASE awardees.

Dr. Khalil was selected to receive a PECASE award because his work is an outstanding example of innovative research at the frontiers of science and technology and because of his strong commitment to service, scientific leadership, education, and outreach. His research uses synthetic biology to engineer cellular networks; the specific focus of his CAREER award is to develop synthetic tools to study the function of prions in yeast cells and populations. You can read more about his research at Boston University on his lab’s website or in a post we featured via the Share MCB Science blog theme.

Please join us in congratulating Dr. Khalil!

This work is partially funded by the Systems and Synthetic Biology Cluster of the Division of Molecular and Cellular Biosciences, CAREER Award #MCB-1350949.

MOLECULAR BIOPHYSICS INVESTIGATORS AWARDED SOCIETY HONORS

The Division of Molecular and Cellular Biosciences (MCB) congratulates three investigators who recently received distinguished awards in recognition of their contributions to science. Each investigator has been supported in part by MCB’s Molecular Biophysics program.

This is a headshot style photograph of Dr. Gary Pielak in a grey button down shirt with glasses. He is smiling at the camera.Dr. Gary Pielak received the 2016 Carl Brändén Award from the Protein Society. Dr. Pielak is the Kenan Distinguished Professor of Chemistry, Biochemistry, and Biophysics and Vice Chair of Facilities with a joint appointment at the School of Medicine at the University of North Carolina at Chapel Hill. The Carl Brändén Award honors “an outstanding protein scientist who has made exceptional contributions in the areas of education and/or service to the science.”  The service part of the Award reflects, in part, Gary’s stint with us as a MCB Program Director. Dr. Pielak works with his research group to study the equilibrium thermodynamics of proteins under crowded conditions and in living cells using high-resolution in-cell NMR and other methods. His research is supported in part by MCB and NSF’s Division of Chemistry.

Dr. Martin Gruebele was awarded the 2017 Nakanishi Prize by the American Chemical Society. Dr. Gruebele is a 2013 National Academy of Sciences fellow, James R. Eiszner Endowed Chair in Chemistry, Professor of Physics at the Center for Biophysics and Quantitative Biology, and full-time faculty member in the Beckman Institute Nanoelectronics and Nanomaterials group at the University of Illinois at Urbana-Champaign. Much like MCB places high priority on cross-disciplinary research (using computational, physical, mathematical, and engineering tools, technologies, or methodologies to address major biological questions), the Nakanishi prize celebrates “significant work that extends chemical and spectroscopic methods to the study of important biological phenomena.” The Gruebele group uses lasers, microscopy, and computational approaches to explore complex biochemical processes such as transport of unfolded proteins within a cell. This work was supported in part by MCB and NSF’s Division of Chemistry, Division of Materials Research, Division of Undergraduate Education, and the Office of International Science and Engineering.

This is a headshot style photo of Dr. Dave Thirumalai in a grey striped button down shirt. He is smiling at the camera.Dr. Dave Thirumalai received the 2016 Award in Theoretical Chemistry from the Division of Physical Chemistry of the American Chemical Society during the Fall ACS National Meeting in Philadelphia. Dr. Thirumalai is currently Chair of the Department of Chemistry in the College of Natural Sciences at the University of Texas at Austin. As noted on the awards web page, Dr. Thirumalai was recognized for his “outstanding contributions to physical and biophysical chemistry, especially work on protein and RNA folding, protein aggregation, and effects of molecular crowding in cells.” The work of Dr. Thirumalai and his research team when we was at the University of Maryland was supported in part MCB and NSF’s Division of Chemistry, Division of Physics, and the Office of Advanced Cyberinfrastructure.

Please join MCB in congratulating Drs. Pielak, Gruebele, and Thirumalai on their awards!

Cecilia McIntosh Recognized for Research and Mentoring

Dr. Cecilia McIntosh has studied the structure and function of secondary metabolites in fruit for over 20 years at East Tennessee State University (ETSU). She has had the opportunity to mentor and train over 60 students in her role as a professor of biological science and now, as Dean of the School of Graduate Studies. This year, Dr. McIntosh’s commitment to scientific education and outreach has been recognized by various organizations at ETSU and in the surrounding communities.  The Bristol YWCA has selected McIntosh to receive one of twelve Tribute to Women Awards this year. This annual award program recognizes the outstanding achievements of individuals throughout East Tennessee and Southwest Virgina. Recipients are nominated by area organizations and selected to represent the arts, education, business, and community efforts. In addition to being recognized by her larger community, Dr. McIntosh has been named a 2015 Notable Woman of ETSU and selected to receive the 2015 ETSU College of Arts and Sciences Outstanding Faculty Research Award.  Dr. McIntosh credits NSF support as a significant factor in her ability to have a productive research career.  Congratulations to Dr. McIntosh for her achievements!

Dr. Brian Hoffman selected as a fellow for the International EPR (ESR) Society

The International Electron Paramagnetic Resonance (Electron Spin Resonance) Society has announced  Brian Hoffman  as a 2015 Fellow.   The Hoffman research group at Northwestern University studies electron transfer and resonance in proteins and metalloenzymes using a combination of nuclear magnetic resonance (NMR) and electron spin resonance (ESR) techniques.  This interdisciplinary approach to understanding the fundamental processes through which protein-protein interactions occur has made significant strides in the field, evidenced by a robust publication record and over two decades of research funding from the Division of Molecular and Cellular Biosciences.  Congratulations, Dr. Brian Hoffman!

Congratulations to 2014 Nobel Laureate, William E. Moerner

Congratulations to MCB Principal Investigator William E. Moerner on being awarded a 2014 Nobel Prize in Chemistry!  Moerner is one of three recipients whose research on “the development of super-resolved fluorescence microscopy” has transformed the field of nanoscopy, a method used to visualize single molecules and their activity within cells.  His work in Surpassing the limitations of the Light Microscope was supported by the Molecular Biophysics Cluster in 1999.

MCB proudly recognizes the investments made into Dr. Moerner and his research as his work has made profound impacts on the progress of science.

Click here to hear his response below.

.