biology

Sharing MCB Science: The Genetic Response of Diatoms to Ocean Acidification

The ocean is a vast ecosystem, the health of which depends on balanced interactions between the chemical composition of the water and the organisms that inhabit it. One major threat to this balance is ocean acidification. Ocean acidification is the result of the rapid increase in atmospheric carbon dioxide (CO2) in the past 200 years. Carbon dioxide in the atmosphere is absorbed by the ocean, triggering a chemical reaction that lowers the pH of the water, making it acidic. This chemical change in the water may negatively impact vital organisms in this ecosystem. Diatoms, a type of algae, are of particular interest because they form the base of food webs in nutrient-rich coastal systems. These systems support fisheries, which are important to the human food supply. In addition, diatoms play a central role in nutrient and carbon cycling within their ecosystem, and account for 40% of total marine primary production. Despite the importance of diatoms, their response to ocean acidification is not well-understood.

To address this gap in knowledge, Dr. Monica Orellana, a principal scientist at the Institute for Systems Biology and the Polar Science Center at the University of Washington (pictured above on the right), and Dr. Nitin Baliga professor at the Institute for Systems Biology (pictured above on the left), partnered with Dr. Virginia Armbrust, Director of the School of Oceanography at the University of Washington. Together, these researchers and their teams developed experiments to mimic ocean acidification in the laboratory, and observe the DNA transcription response in the model diatom cell, T. pseudonana, to forecast diatoms’ response to projected environmental scenarios for the 21st century.

In a recent article published in Nature Climate Change, the research team reports that the diatom cell responds to increasing CO2 levels (i.e., increasingly acidic water) by decreasing the products of groups of genes involved in carbon-concentrating mechanisms (CCMs) and photorespiration, which are regulated by the same transcription factor. This response may allow diatoms to save energy when exposed to the increased CO2 levels predicted for the end of the century. This acclimation process also suggests one may see a shift in the species composition and primary productivity of marine microbial ecosystems at higher CO2 levels.

As a broader impact of this research, an inquiry-based curriculum module for high school science courses was developed to teach the process of systems science in the context of ocean acidification. This module engages and motivates students to be involved in the learning process and helps develop critical thinking skills necessary to solve a global problem. The students act as interdisciplinary scientists and delegates to investigate how increasing atmospheric carbon is affecting the oceans’ chemistry and biology, as well as integral populations of organisms. The students are trained to think on a systems level to critically assess information, predict effects of high CO2, and design and conduct collaborative, multivariable experiments to explore the consequences of high CO2 in seawater. In the concluding activity, the students discuss the system consequences of ocean acidification and they make recommendations for further research, policy-making, and lifestyle changes.

Welcome to MCB Arvin Tahami!

Hear from Arvin Tahami, the newest member of the MCB Division.

What is your educational background?

I have a masters degree in Biotechnology from California State University, San Marcos.

What is your position? When did you start working in MCB?

I started two weeks ago as a Presidential Management Fellow. I work as a Biologist in MCB.

The Presidential Management Fellowship program is led by the Office of Personnel Management to recruit recent graduates from graduate programs into federal service. Recently OPM has added an additional STEM track designed specifically for recent graduates with a background in science, technology, engineering, and mathematics. My appointment is in the PMF STEM track.

What attracted you to work for NSF?

Scientists working on important projects to advance our basic understanding of science rely on funding from organizations like the NSF to carry out their work. My role at the NSF allows me the unique privilege to play a part in making sure that our nation’s top scientists, working on worthy projects with the potential to have the highest impact, can apply to the NSF for the funding they need.

What have you learned in the first two weeks of your position?

I am very excited to be a part of MCB. Everybody here is very passionate about our mission. So far I’ve enjoyed the opportunity to observe a couple proposal panel reviews. It has been very fascinating watching scientists debate the merits of each proposal being reviewed. Peer review is central to the advancement of science. Using this process to evaluate funding proposals is very fitting with the foundation’s mission. I’ve learned a great deal about how review panels evaluate proposals by watching them in action.

Share Your Science Via Our Blog

The Division of Molecular and Cellular Biosciences (MCB) supports fundamental research and related activities designed to promote understanding of complex living systems at the molecular, sub-cellular, and cellular levels. MCB invites you to submit your research to be featured on our blog in order to inform our stakeholders of the outstanding research we fund, and to better foster a sense of community among MCB principal investigators.

We hope to share a broad sampling of this research and its outcomes on our blog. If you are a) an MCB funded researcher and b) have recently published research that you would like to share, please fill out this form to have your research featured.

 This section of the blog will present highlights from the published research projects of MCB-funded principal investigators. By submitting this information, you acknowledge and agree that NSF MCB reserves the right to use and edit the submitted content in the preparation of an original blog post suitable for the MCB blog’s readership. MCB PIs who are interested in having their work considered for this section of the blog are invited to submit their information via this form with details of the publication on which a blog post would be based.  The Division continues to support a broad range of projects in the molecular and cellular biosciences, and highlighted projects should not be taken as examples of areas of special emphasis for support.