Broader Impacts

iBiology: Sharing Research One Video At a Time

The growth in interdisciplinary science over the past decade has led to new developments in biological knowledge and techniques. For example,  CRISPR technology allows scientists to make specific changes to genomes and has transformed the field of genetics. As the field of biology increases in complexity due to technological innovations and expansion of knowledge, new ways to teach and communicate science must be developed. iBiology addresses this challenge by sharing science in the form of easy-to-watch video seminars,  and aims to lead the way in creating ways to spread interest in science for educational and scientific communities.

One of the main goals of iBiology is to bring research questions currently being explored by top-level scientists to students, scientists, and educators. This is most visible in the recently launched video series, “Great Questions in Life Sciences.” Investigators reveal the great scientific problems at the intersection of physics, computation, and biology that will demand attention over the coming decade. These videos offer the viewer a unique glimpse into the forefront of research and are intended to spark the curiosity of young scientists and students considering a career in life sciences research.

In talking to iBiology’s Associate Director, Dr. Shannon Behrman, we learned that, not only does iBiology want to expose the biological questions that are being actively pursued; they also hope to demystify what it would be like to become a researcher in various fields of biology answering those very questions.  Videos under the “How I Became a Scientist” section show interviews with various well-known scientists outlining their journeys to becoming researchers. Other videos under the “Careers” section show different career paths that are open to someone with a science degree. Each of these videos help to make this broad field more accessible by providing professional advice to aspiring students.  This early exposure to research helps young scientists feel like they can fit into and make a difference in the scientific community.

iBiology does not just provide a tool for students to see what current leaders in the field of biology are working on. They also provide a much-needed teaching resource. The program provides a plethora of educational resources and study tools for students in several different fields of biology, including biochemistry, genetics, microbiology, and human health. To support science teachers, iBiology provides possible questions for various assessments for students, along with a key terms index to help shape their curriculum.

For science to thrive, it needs innovative ideas.  iBiology answers this call with new approaches for getting students to become more interested in science, and by providing these students with resources to help them succeed in their scientific endeavors.  As a result, the iBiology team hopes to see more young people bringing in new and innovative approaches to current research problems in the future.

Cecilia McIntosh Recognized for Research and Mentoring

Dr. Cecilia McIntosh has studied the structure and function of secondary metabolites in fruit for over 20 years at East Tennessee State University (ETSU). She has had the opportunity to mentor and train over 60 students in her role as a professor of biological science and now, as Dean of the School of Graduate Studies. This year, Dr. McIntosh’s commitment to scientific education and outreach has been recognized by various organizations at ETSU and in the surrounding communities.  The Bristol YWCA has selected McIntosh to receive one of twelve Tribute to Women Awards this year. This annual award program recognizes the outstanding achievements of individuals throughout East Tennessee and Southwest Virgina. Recipients are nominated by area organizations and selected to represent the arts, education, business, and community efforts. In addition to being recognized by her larger community, Dr. McIntosh has been named a 2015 Notable Woman of ETSU and selected to receive the 2015 ETSU College of Arts and Sciences Outstanding Faculty Research Award.  Dr. McIntosh credits NSF support as a significant factor in her ability to have a productive research career.  Congratulations to Dr. McIntosh for her achievements!

Dr. Brian Hoffman selected as a fellow for the International EPR (ESR) Society

The International Electron Paramagnetic Resonance (Electron Spin Resonance) Society has announced  Brian Hoffman  as a 2015 Fellow.   The Hoffman research group at Northwestern University studies electron transfer and resonance in proteins and metalloenzymes using a combination of nuclear magnetic resonance (NMR) and electron spin resonance (ESR) techniques.  This interdisciplinary approach to understanding the fundamental processes through which protein-protein interactions occur has made significant strides in the field, evidenced by a robust publication record and over two decades of research funding from the Division of Molecular and Cellular Biosciences.  Congratulations, Dr. Brian Hoffman!

Making the Leap From RUI to Graduate Research Fellowship

In 2013, Emina Stojkovic, Associate Professor at Northeastern Illinois University was awarded a Research in Undergraduate Institutions (RUI) grant from MCB to study light-responsive proteins in the development of myxobacteria. The RUI award mechanism is designed to support faculty at predominately undergraduate institutions conducting research that engages them in their professional field, builds capacity for research at their home institution, and supports the integration of research and undergraduate education.

We are excited to report that Dr. Stojkovic’s research, mentoring, and advising activities at the undergraduate level have resulted in four students being awarded National Science Foundation Graduate Research Fellowships to support their graduate studies. Two of the students, Angela Varela and Anna Baker, were undergraduate researchers trained in Stojkovic’s laboratory by working on the RUI project. The other two students, Daniel Westcott and Christopher Craddock were trained in research groups that collaborated with Stojkovic on interdisciplinary projects.  The students share more about their research interests in this press release provided by Northeastern Illinois University. In response to this news Dr. Stojkovic states, “The impact that NSF has had on our alumni and the students who are on their way to graduate from our department is tremendous. I am honored and grateful to serve in the role of a mentor and primary investigator.”

Jennifer Doudna featured as Influential Scientist in Time Magazine

Time Magazine recently published the “Time 100“, a list of influential leaders in their respective fields. We are pleased to report that MCB-funded investigator Jennifer Doudna was included as an influential scientist for her transformative research to develop gene editing technology.

Dr. Doudna , along with colleagues and collaborators, developed a now widely used genome editing tool known as the CRISPR-Cas1 system.  This invention emerged from Dr. Doudna’s interest in learning how an apparent bacterial adaptive immune system functions on a molecular level that is capable of protecting bacteria from deleterious foreign nucleic acids, including those delivered by bacteriophages. She and others found that CRISPR sequences represent a form of “memory” resulting from previous exposure to foreign DNAs and showed that fragments of these exogenous DNAs are integrated into the CRISPR array. Upon phage invasion, the CRISPR sequence is transcribed, together with a down-stream cas gene that encodes an endonuclease, such as Cas9 in Streptococcus pyogenes. The long, non-coding pre-CRISPR RNA (pre-crRNA) transcript is then processed, producing multiple different crRNAs. The crRNAs form a hybrid to a second CRISPR-encoded RNA called transactivating CRISPR RNA (tracrRNA), which has regions of complementarity to the various crRNAs. These RNA hybrid oligomers associate with the endonuclease and serve as a guide to target newly invading nucleic acids. Recognition of the foreign DNA triggers precise double-stranded cleavage, leading to complete nucleolytic degradation.

Understanding the molecular events by which CRISPRs function on the molecular level led Dr. Doudna and her collaborators to develop the pioneering genome editing capability that functions broadly across many species. Dr. Doudna gives an overview of this technology in the following video.

NSF funding for Dr. Doudna’s groundbreaking research began in 2007 and continues today.  Her research represents an excellent example of how fundamental research inspires innovation.

________________________________________

1CRISPR stands for Clustered Regularly Interspaced Short Palindromic Repeats. These repeats are often associated with coding sequences for RNA-guided DNA endonuclease enzymes, general denoted “Cas” for CRISPR-associated.

Working Towards Gender Equity in Science

Broader impacts associated with NSF grants come in all forms and address issues such as:

  • public understanding of the science NSF funds
  • engaging the next generation of elementary school children in science to nurture the excitement of our future generation of science leaders
  • bringing computational science education to the biological sciences at the undergraduate level to ensure that the newest biologists to enter the field can succeed at the quantitative, predictive, theory driven cell and molecular biological sciences that NSF supports.

This week, the Editors share an example of Broader Impacts from a researcher supported by MCB that addresses the issue of unconscious bias and gender equity in science.

As part of her broader impacts, Dr. Karen Fleming, professor of Biophysics at Johns Hopkins University, is hosting a series of professional workshops focusing on gender equity in science. The goal of these workshops is to empower women in the STEM fields with tools for success. The workshops do this by facilitating a dialogue between graduate students, postdoctoral students and faculty members on diversity topics highlighted by readings from the social psychology literature. Topics covered to date include: unconscious bias, the confidence gap, and emotion in the workplace.

In her first workshop, Dr. Fleming discussed Jo Handelsman’s 2011 PNAS paper entitled “Science faculty’s subtle gender biases favor male students.” This paper investigated women and men faculty’s response to hiring a male or female for a laboratory manager position based on the exact same application except the first name was either John or Jennifer. One extraordinary finding from this paper that contradicts what many would expect is that both men and women faculty discriminated against the female applicant. The reason for this observation is thought to be unconscious bias, which has been another subject of one of Dr. Fleming’s workshops. Prior to this meeting, attendees were encouraged to measure their own unconscious biases using online modules put forth by Project Implicit. Another key finding from the literature that was discussed this year included the confidence gap. Systematic confidence differences between men and women are documented – women exhibit a tendency to underrate themselves, while men overrate themselves. This confidence gap becomes detrimental to a woman’s career when it hinders her ability to take action in the workplace. The most recent workshop considered the topic of emotion in the workplace. This is not viewed equally for both genders: studies have shown that men and women displaying emotion in the workplace are rewarded and penalized, respectively.

After a brief review of the findings of each journal article, the studies are discussed in-depth along with the applications of the findings to the social context of academia. Although current graduate students have raised concerns about the future of equity in the academic science workplace, tenured faculty have noted the leaps towards gender equity that have occurred in the past decades. Discussions have concluded that fostering an attitude of awareness, openness, and accountability of both men and women in science will aid in achieving gender equity in science. Before these workshops were available at JHU, there were few opportunities to regularly discuss these issues because neither unconscious bias nor gender equity training is mandatory in the sciences at many universities, JHU included.

Future seminars in the 2015 academic calendar include a panel of tenured women faculty in various science departments who will answer questions and comment on their experiences with gender equity in science. Further reading and links to the primary literature mentioned above can be found on Dr. Karen Fleming’s blog on achieving gender equity in science.

Do you have a great example of broader impacts that you would like to share? Please email the editors at mcbnews@nsf.gov or write to us using a feedback form.