CRISPR

MCB-awardee receives Nobel Prize in Chemistry

The Division of Molecular and Cellular Biosciences (MCB) joins the National Science Foundation (NSF), and the scientific community in congratulating Dr. Jennifer Doudna and Dr. Emmanuelle Charpentier on their 2020 Nobel Prize in Chemistry. The two were awarded the prize jointly “for the development of a method for genome editing.” A little over a decade ago, MCB awarded Dr. Doudna the first in a series of grants to explore Mechanisms of Acquired Immunity in Bacteria (MCB 1244557).  “It is wonderful to see the fruits of Dr. Doudna’s work, initially enabled by NSF investment in discovery-driven research, which is reaping many societal benefits” said Dr. Basil Nikolau, MCB Division Director. 

“CRISPR-Cas9 is opening new worlds of possibility in fields as wide-ranging as bioengineering, medicine, agriculture, and biomanufacturing. Researchers are still working to understand the full potential of this important tool,” said National Science Foundation Director Sethuraman Panchanathan. “The teams behind this groundbreaking discovery have uncovered and developed fundamental science that will result in decades’ worth of applications. NSF has long supported the discovery-driven research of Dr. Jennifer Doudna and her lab with grants, including our prestigious Alan T. Waterman award. We congratulate her and Emmanuelle Charpentier and join the rest of the world in waiting to see what CRISPR produces next,” said Dr. Panchanathan in a news release.

TOP FIVE OF 2019: MOST POPULAR POSTS OF THE YEAR

From broadening participation to increasing diversity and inclusion, MCB’s five most-viewed posts published in 2019 showcase our most read topics. Looking for ideas on how to improve your broader impacts? Read about Dr. Jewett’s BioBits kits. Interested in transitioning to a non-academic STEM career field? Dr. Cooper discusses how she ended up in university administration after a career as a researcher. New to NSF or interested in brushing up your reviewing skills? Read tips from MCB program directors on writing effective reviews.

In 2020, the MCB blog team looks forward to sharing information about exciting outreach efforts, funding opportunities, and more! Subscribe to notifications (on the right side of this page) to be the first to know what’s on MCB’s mind.

1. TEACHING CRISPR IN THE CLASSROOM: A NEW TOOL FOR TEACHERS

Students using BioBits kits.

Dr. Jewett developed a new method of teaching CRISPR – a gene editing tool – using BioBits kits. (Published June 7)

2. OPPORTUNITY AND INTENTION: NEVER SAY NEVER

Dr. Adrienne Cooper from Florida Memorial University.

Dr. Adrienne Cooper’s transition from STEM student to researcher to university administrator. (Published April 19)

3. HBCU-UP EIR: WEBINAR ON WRITING COMPETITIVE PROPOSALS

HBCU EiR Program graphic describing the solicitation.

MCB hosted a webinar on writing competitive proposals for faculty at HBCU institutions in March. (Published March 8)

4. BROADER IMPACTS — IF IT WORKS, KEEP DOING IT

High school and undergraduate student working together in O'Donnell Laboratory.

Dr. Allyson O’Donnell’s broader impact activity – “near peer mentoring” – pairs high school students from under-represented minorities with undergraduates in her lab. (Published June 27)

5. TIPS FOR WRITING EFFECTIVE REVIEWS

Tips for writing effective reviews infographic.

MCB Program Directors provide their top five tips for writing useful and informative reviews. (Published February 20)

Teaching CRISPR in the classroom: a new tool for teachers

Photo Credit: Megan Beltran

While CRISPR has become one of the most talked about gene editing tools in the research community, easy-to-use educational activities that teach CRISPR and related molecular and synthetic biology concepts are limited. Michael Jewett and his team at Northwestern University have created a set of user-friendly educational kits to address just this issue, called BioBits kits. This tool was developed as a broader impacts activity in Dr. Jewett’s currently-funded research (NSF 1716766) , investigating and expanding the genetic code for synthetic applications such as producing non-natural polymers in biological systems, and with collaboration and funding from several other institutions.

BioBits kits contain materials to run hands-on lab activities designed to teach high school-aged students the basic concepts of synthetic and molecular biology through simple biological experiments. Students add the included DNA and water to pre-assembled individual freeze-dried cell-free (FD-CF) reactions. The results are noticeable when the individual FD-CF reactions fluoresce, release an odor, or form a hydrogel (depending on the experiment). For example, the BioBits Bright kit includes six different DNA templates, each of which encode for a protein which fluoresces a unique color under blue light, directly demonstrating how proteins differ based on initial DNA sequence. So far, three kits have been developed: BioBits Bright, Explorer, and Health, with activities covering topics from the central dogma of biology, to genetic circuits, antibiotic resistance, and CRISPR.

The visible (or smellable) outputs make the results interactive and intuitive, engaging students in a relatable experience. In addition to the FD-CF reactions and instructions, the kits contain example curriculum, such as one independent research-based activity that asks students to address ethical questions surrounding CRISPR, further engaging students in the topic and providing a deeper understanding of the technology.

Over 330 schools from around the world have requested kits so far. Find out more on the BioBits website or in recent open-access articles in Science Advances and ACS Synthetic Biology.

Jennifer Doudna featured as Influential Scientist in Time Magazine

Time Magazine recently published the “Time 100“, a list of influential leaders in their respective fields. We are pleased to report that MCB-funded investigator Jennifer Doudna was included as an influential scientist for her transformative research to develop gene editing technology.

Dr. Doudna , along with colleagues and collaborators, developed a now widely used genome editing tool known as the CRISPR-Cas1 system.  This invention emerged from Dr. Doudna’s interest in learning how an apparent bacterial adaptive immune system functions on a molecular level that is capable of protecting bacteria from deleterious foreign nucleic acids, including those delivered by bacteriophages. She and others found that CRISPR sequences represent a form of “memory” resulting from previous exposure to foreign DNAs and showed that fragments of these exogenous DNAs are integrated into the CRISPR array. Upon phage invasion, the CRISPR sequence is transcribed, together with a down-stream cas gene that encodes an endonuclease, such as Cas9 in Streptococcus pyogenes. The long, non-coding pre-CRISPR RNA (pre-crRNA) transcript is then processed, producing multiple different crRNAs. The crRNAs form a hybrid to a second CRISPR-encoded RNA called transactivating CRISPR RNA (tracrRNA), which has regions of complementarity to the various crRNAs. These RNA hybrid oligomers associate with the endonuclease and serve as a guide to target newly invading nucleic acids. Recognition of the foreign DNA triggers precise double-stranded cleavage, leading to complete nucleolytic degradation.

Understanding the molecular events by which CRISPRs function on the molecular level led Dr. Doudna and her collaborators to develop the pioneering genome editing capability that functions broadly across many species. Dr. Doudna gives an overview of this technology in the following video.

NSF funding for Dr. Doudna’s groundbreaking research began in 2007 and continues today.  Her research represents an excellent example of how fundamental research inspires innovation.

________________________________________

1CRISPR stands for Clustered Regularly Interspaced Short Palindromic Repeats. These repeats are often associated with coding sequences for RNA-guided DNA endonuclease enzymes, general denoted “Cas” for CRISPR-associated.