CRISPR

Teaching CRISPR in the classroom: a new tool for teachers

Photo Credit: Megan Beltran

While CRISPR has become one of the most talked about gene editing tools in the research community, easy-to-use educational activities that teach CRISPR and related molecular and synthetic biology concepts are limited. Michael Jewett and his team at Northwestern University have created a set of user-friendly educational kits to address just this issue, called BioBits kits. This tool was developed as a broader impacts activity in Dr. Jewett’s currently-funded research (NSF 1716766) , investigating and expanding the genetic code for synthetic applications such as producing non-natural polymers in biological systems, and with collaboration and funding from several other institutions.

BioBits kits contain materials to run hands-on lab activities designed to teach high school-aged students the basic concepts of synthetic and molecular biology through simple biological experiments. Students add the included DNA and water to pre-assembled individual freeze-dried cell-free (FD-CF) reactions. The results are noticeable when the individual FD-CF reactions fluoresce, release an odor, or form a hydrogel (depending on the experiment). For example, the BioBits Bright kit includes six different DNA templates, each of which encode for a protein which fluoresces a unique color under blue light, directly demonstrating how proteins differ based on initial DNA sequence. So far, three kits have been developed: BioBits Bright, Explorer, and Health, with activities covering topics from the central dogma of biology, to genetic circuits, antibiotic resistance, and CRISPR.

The visible (or smellable) outputs make the results interactive and intuitive, engaging students in a relatable experience. In addition to the FD-CF reactions and instructions, the kits contain example curriculum, such as one independent research-based activity that asks students to address ethical questions surrounding CRISPR, further engaging students in the topic and providing a deeper understanding of the technology.

Over 330 schools from around the world have requested kits so far. Find out more on the BioBits website or in recent open-access articles in Science Advances and ACS Synthetic Biology.

Jennifer Doudna featured as Influential Scientist in Time Magazine

Time Magazine recently published the “Time 100“, a list of influential leaders in their respective fields. We are pleased to report that MCB-funded investigator Jennifer Doudna was included as an influential scientist for her transformative research to develop gene editing technology.

Dr. Doudna , along with colleagues and collaborators, developed a now widely used genome editing tool known as the CRISPR-Cas1 system.  This invention emerged from Dr. Doudna’s interest in learning how an apparent bacterial adaptive immune system functions on a molecular level that is capable of protecting bacteria from deleterious foreign nucleic acids, including those delivered by bacteriophages. She and others found that CRISPR sequences represent a form of “memory” resulting from previous exposure to foreign DNAs and showed that fragments of these exogenous DNAs are integrated into the CRISPR array. Upon phage invasion, the CRISPR sequence is transcribed, together with a down-stream cas gene that encodes an endonuclease, such as Cas9 in Streptococcus pyogenes. The long, non-coding pre-CRISPR RNA (pre-crRNA) transcript is then processed, producing multiple different crRNAs. The crRNAs form a hybrid to a second CRISPR-encoded RNA called transactivating CRISPR RNA (tracrRNA), which has regions of complementarity to the various crRNAs. These RNA hybrid oligomers associate with the endonuclease and serve as a guide to target newly invading nucleic acids. Recognition of the foreign DNA triggers precise double-stranded cleavage, leading to complete nucleolytic degradation.

Understanding the molecular events by which CRISPRs function on the molecular level led Dr. Doudna and her collaborators to develop the pioneering genome editing capability that functions broadly across many species. Dr. Doudna gives an overview of this technology in the following video.

NSF funding for Dr. Doudna’s groundbreaking research began in 2007 and continues today.  Her research represents an excellent example of how fundamental research inspires innovation.

________________________________________

1CRISPR stands for Clustered Regularly Interspaced Short Palindromic Repeats. These repeats are often associated with coding sequences for RNA-guided DNA endonuclease enzymes, general denoted “Cas” for CRISPR-associated.