Broader Impacts are activities which advance societal goals through either the research itself or through complimentary efforts that advance the larger enterprise of science. Broader Impact activities don’t have to be original, one-of-a-kind ideas. However, they should clearly address a need, be well-planned and documented, and include both a thoughtful budget and a thorough assessment plan. Principle Investigator Allyson O’Donnell uses near-peer mentoring to pair high school students from under-represented minorities with undergraduates in the O’Donnell lab at the University of Pittsburgh, and assesses the outcomes to identify impact.

High school student Hanna Barsouk (Taylor Allderdice High School) and undergraduate student Ceara McAtee (University of Pittsburgh) work on a project in the O’Donnell Laboratory at the University of Pittsburgh.

Goals of the Broader Impact activity: “The near-peer program focuses on bringing underrepresented minority high school students into the lab and providing an opportunity for them to develop their passion for science. Undergraduates who serve as mentors have measurably stronger engagement with their work in the lab.”

Recruitment: “The high school students volunteer in the lab during the school year and then can apply to participate in more research-intensive activities during the summer. The summer internships are paid, and this is currently funded through an REU supplement as part of my CAREER award.” (NSF award 1902859)

How it works: “I pair the high school students with an undergraduate mentor so that there is a near-peer mentor connection with someone closer in age than a grad student or post doc. We have found that this gives the undergraduate a stronger sense of engagement and ownership in their research project. Plus, based on our assessments, this mentoring experience makes it more likely that the undergraduates will participate in outreach activities in the future. From the high school students’ perspectives, they have someone they are more comfortable asking questions of and who can help give them advice on navigating the application process for universities. Of course, this is in addition to having myself and other team members as mentors.”

How do you measure impact? “We have used the Grinnell College SURE survey [Survey of Undergraduate Research Experiences] and other reflective assessments of this approach and find that both the undergraduate and high school students report significantly enhanced learning experiences. Specifically, the high school students show higher learning gains in understanding the research process and how to think like a scientist, while the undergraduate students gain more knowledge about science literacy and confidence in their ability to engage the community in science.”

High school students Sara Liang (left) and Hannah Barsouk proudly display a box of plasmids they created to support their research project at the O’Donnell lab. The two attend Taylor Allderdice High School.

Future plans? “We first used this system of pairing high school students with undergraduate mentors while the O’Donnell lab was located at Duquesne University. We worked with eight students in 2017 and six students in 2018 and we expanded to other labs in the Department of Biological Sciences. We hope to expand the program here at the University of Pittsburgh as well, where it will also be supported by our fantastic outreach team.”

Cecilia McIntosh Recognized for Research and Mentoring

Dr. Cecilia McIntosh has studied the structure and function of secondary metabolites in fruit for over 20 years at East Tennessee State University (ETSU). She has had the opportunity to mentor and train over 60 students in her role as a professor of biological science and now, as Dean of the School of Graduate Studies. This year, Dr. McIntosh’s commitment to scientific education and outreach has been recognized by various organizations at ETSU and in the surrounding communities.  The Bristol YWCA has selected McIntosh to receive one of twelve Tribute to Women Awards this year. This annual award program recognizes the outstanding achievements of individuals throughout East Tennessee and Southwest Virgina. Recipients are nominated by area organizations and selected to represent the arts, education, business, and community efforts. In addition to being recognized by her larger community, Dr. McIntosh has been named a 2015 Notable Woman of ETSU and selected to receive the 2015 ETSU College of Arts and Sciences Outstanding Faculty Research Award.  Dr. McIntosh credits NSF support as a significant factor in her ability to have a productive research career.  Congratulations to Dr. McIntosh for her achievements!

Principal Investigator Spotlight: Dr. Sandra Murray

Tell Us about Your Current Career Position and Your Research Focus.

I am currently a Professor in the Department of Cell Biology at the University of Pittsburgh where I am working to elucidate the molecular mechanisms that regulate gap junction plaque assembly, disassembly, and degradation.

What Are the Key Experiences and Decisions You Made That Have Helped You Reach Your Current Position?

My early opportunities to get involved in science fairs while still in grammar school opened the door to a number of opportunities which led me outside my immediate community and facilitated my meeting a diverse group of mentors, getting into summer programs, gaining employment while in College and eventually getting into my chosen field.

One of my high school science fair projects resulted in my being identified by a biology teacher to participate in a science program at the University of Chicago during the academic year. As part of that program, I spent the summer in the Department of Anatomy at the University of Illinois, School of Medicine. My job was to clean the medical school students’ histology slides by wiping them with an alcohol-soaked towel. The slides were covered with immersion oil that needed to be removed in preparation for use by the next class of medical students. I took this task very seriously. Innovative at an early age, I decided to dump all the slides in a large glass container filled with alcohol overnight to soak so that then the next morning I would only have to wipe the slides dry and return them to the correct slots in the boxes (all slides were labeled by box and slot number). When I arrived the next morning, the debris was gone from the slides but to my horror, almost all the labels had soaked off as well. I decided I would tell the head technician what had happened, but that it would be best to wait until I had repaired the damage before asking for help. After all, my mother had told half the neighborhood that her little daughter was working at the University. How the heck could I tell them I had been fired after only a week? Better to try to repair the problem, prolong the summer job, and then tell them, I decided. For the next weeks, I came in early to make the new labels and to try to match the unlabeled slides to the slides in the box that I had not dumped for soaking. I held the slides to the light and matched by color of the stain, size of the specimen, and perhaps a good guess. Finally however I asked a young research scientist to check if my identifications were correct. I expected him to hold the slide to the light and make the magical judgment call, “this is a slice of liver.” Instead, he immediately went to the large microscope sitting on a table in the corner. A world opened for me that day!!!! Who knew the power of that thing in the corner that I had ignored until now? Wow. I was hooked!!!  I used the microscope to reorganize my earlier guesses. I arrived earlier and stayed later than the head histologist, in order to re-label and restore the slides to the correct slots in a box. The chairman of the department took notice of my diligence (my frantic attempt to recover from my mistake and to restore the boxes) and he was amazed at the now sparkling slides (soaked, polished untill they glittered, and newly labeled). When the summer program ended, not only did I not get fired for my innovative mishap with the slides, but instead I was hired by that chairman to work in the Department of Anatomy during Christmas breaks and following summers.

I have continued throughout my career to use microscopes.  Now, I couple the visual observations made with microscopes to biochemical and molecular biological observations made with the new tools of science to answer questions.

Did Support from the Division of Molecular and Cellular Biosciences Impact Your Research And/or Career? If So, Then How?

Support from the Division of Molecular and Cellular Bioscience has permitted my research team to demonstrate the increase in gap junction channels following treatment of cells with certain hormones, the inverse relationship between cell proliferation and gap junction channels, the molecules that move through the channels, the function of these molecules once they move through the gap junction channels and most recently the molecular machinery and processing needed for the removal of gap junction channels from the cell surface and subsequent degradation.The world of gap junctions and cell-cell communication has blossomed and funding from the NSF has allowed me to be part of the team that has planted, tilled and watched as the field continues to grow.

Beyond the scientific impact that NSF funding has allowed, my career has been greatly enhanced. Without funding from the Division of Molecular and Cellular Biosciences, I would not have been able to  lead a research team or provide training and opportunities to others who have excelled in science.

How Did You First Become Interested in Science?

My science projects took me many places. I made hard water soft with one of my science entries and my mother took me to a water company where they could give me tips on making my contraption and my father helped me assemble my design from parts left over in our moving company (Murray Brothers Movers) garage. The project was a bust and did not win anything but it left me eager for the next science adventure. I tried to slow the growth of little creatures called Rotifers. My older sister took me to the University of Illinois and to the VA hospital to get agar plates for me to dabble into bacteriology and by the time I left grade school, my entire family and some members of the neighborhood has assisted me in my path toward discovery.

What Is it That Keeps You Working Hard and Engaged in Your Work?

I want to see more! I want to find out why? I really like what I do. I enjoy watching while the next generation of scientists discovers a world that only few get to see.

Were There Times When You Failed at Something You Felt Was Critical to Your Path? If So, Then How Did You Regroup and Get Back on Track?

Failure was a part of the game. I try to do my own personal best and to maintain my own internal standards. I understood early on that I did not have to be the best at everything, but that I had to focus on certain areas. I found that sometimes things were difficult and participating in those things was not comfortable, but if I took on the difficult task (one little step at a time) then I would grow. For example, I was a very shy person and it was truly a struggle to stand and speak to group. Public speaking is critical to being able to present data at scientific meetings and teach at the University. I shook each time I walked toward a podium. But each time I presented, it became a bit easier. Today, I look forward to the opportunity to speak and to bring my message to the audience. Failure and difficult times have taught me how to understand and treat other people, as well as how to just get up from a fall.

What Advice Would You Give to Others Who Want to Pursue a Career in Science That Is Similar to Yours?

Set clear goals; visualize where you want to go and what you want to do. Let your mind wander to tap into your own power, and manage your time so that you can climb your academic mountains and realize your dreams.

HaiSsize copy