One of the challenges facing researchers responding to the COVID-19 (SARS-CoV-2) pandemic is the ability to identify and track infection early. Predicting the spread of illness can help communities and governments know where to concentrate resources, focus outreach efforts, and how to alter policy.
One way that researchers have been able to detect early increases in cases is by sampling sewer systems. Because everyone flushes their toilet, sewer samples represent the health of the entire neighborhood on any given day. Researchers can detect a SARS-CoV-2 signal in the sewer before hospitals see an uptick in patients. The samples collected would track the rise and fall of infections in the community.
Dr. Julius Lucks (MCB-2028651) and his lab at Northwestern University in Chicago have made this kind of wide-scale sewer sampling possible by utilizing CRISPR Isothermal Amplification (CIA). This approach allows samples to be processed in a single reaction at room temperature, making it a faster, cheaper, and a more scalable assay. The ability to have a point-of-contact test that takes less than an hour, costs less than a dollar, and is more accurate than a PCR-based method could change the way researchers approach SARS-CoV-2 tracking. Read more in the Chicago Tribune.